Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 111(11): 1760-1775.e8, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36996810

RESUMEN

The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Ratones , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Actinas/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Noqueados , Espinas Dendríticas/metabolismo , Mamíferos/metabolismo
2.
Nat Commun ; 13(1): 680, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115539

RESUMEN

The pruning of dendritic spines during development requires autophagy. This process is facilitated by long-term depression (LTD)-like mechanisms, which has led to speculation that LTD, a fundamental form of synaptic plasticity, also requires autophagy. Here, we show that the induction of LTD via activation of NMDA receptors or metabotropic glutamate receptors initiates autophagy in the postsynaptic dendrites in mice. Dendritic autophagic vesicles (AVs) act in parallel with the endocytic machinery to remove AMPA receptor subunits from the membrane for degradation. During NMDAR-LTD, key postsynaptic proteins are sequestered for autophagic degradation, as revealed by quantitative proteomic profiling of purified AVs. Pharmacological inhibition of AV biogenesis, or conditional ablation of atg5 in pyramidal neurons abolishes LTD and triggers sustained potentiation in the hippocampus. These deficits in synaptic plasticity are recapitulated by knockdown of atg5 specifically in postsynaptic pyramidal neurons in the CA1 area. Conducive to the role of synaptic plasticity in behavioral flexibility, mice with autophagy deficiency in excitatory neurons exhibit altered response in reversal learning. Therefore, local assembly of the autophagic machinery in dendrites ensures the degradation of postsynaptic components and facilitates LTD expression.


Asunto(s)
Autofagia/fisiología , Espinas Dendríticas/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Proteoma/metabolismo , Proteómica/métodos , Potenciales Sinápticos/fisiología , Animales , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Nat Commun ; 10(1): 3454, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371726

RESUMEN

Copy-number variants of the CYFIP1 gene in humans have been linked to autism spectrum disorders (ASD) and schizophrenia (SCZ), two neuropsychiatric disorders characterized by defects in brain connectivity. Here, we show that CYFIP1 plays an important role in brain functional connectivity and callosal functions. We find that Cyfip1-heterozygous mice have reduced functional connectivity and defects in white matter architecture, similar to phenotypes found in patients with ASD, SCZ and other neuropsychiatric disorders. Cyfip1-deficient mice also present decreased myelination in the callosal axons, altered presynaptic function, and impaired bilateral connectivity. Finally, Cyfip1 deficiency leads to abnormalities in motor coordination, sensorimotor gating and sensory perception, which are also known neuropsychiatric disorder-related symptoms. These results show that Cyfip1 haploinsufficiency compromises brain connectivity and function, which might explain its genetic association to neuropsychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Encéfalo/metabolismo , Predisposición Genética a la Enfermedad/genética , Proteínas del Tejido Nervioso/metabolismo , Esquizofrenia/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Trastorno del Espectro Autista/diagnóstico por imagen , Axones , Conducta Animal , Encéfalo/diagnóstico por imagen , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Haploinsuficiencia , Heterocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/metabolismo , Fenómenos Fisiológicos del Sistema Nervioso/genética , Fenotipo , Desempeño Psicomotor , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Filtrado Sensorial , Sustancia Blanca
4.
Nat Commun ; 8(1): 293, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28819097

RESUMEN

The brain cytoplasmic (BC1) RNA is a non-coding RNA (ncRNA) involved in neuronal translational control. Absence of BC1 is associated with altered glutamatergic transmission and maladaptive behavior. Here, we show that pyramidal neurons in the barrel cortex of BC1 knock out (KO) mice display larger excitatory postsynaptic currents and increased spontaneous activity in vivo. Furthermore, BC1 KO mice have enlarged spine heads and postsynaptic densities and increased synaptic levels of glutamate receptors and PSD-95. Of note, BC1 KO mice show aberrant structural plasticity in response to whisker deprivation, impaired texture novel object recognition and altered social behavior. Thus, our study highlights a role for BC1 RNA in experience-dependent plasticity and learning in the mammalian adult neocortex, and provides insight into the function of brain ncRNAs regulating synaptic transmission, plasticity and behavior, with potential relevance in the context of intellectual disabilities and psychiatric disorders.Brain cytoplasmic (BC1) RNA is a non-coding RNA that has been implicated in translational regulation, seizure, and anxiety. Here, the authors show that in the cortex, BC1 RNA is required for sensory deprivation-induced structural plasticity of dendritic spines, as well as for correct sensory learning and social behaviors.


Asunto(s)
Aprendizaje/fisiología , Neocórtex/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , ARN Citoplasmático Pequeño/genética , Animales , Secuencia de Bases , Células Cultivadas , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Hibridación Fluorescente in Situ , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Neocórtex/citología , Neocórtex/metabolismo , Plasticidad Neuronal/genética , Células Piramidales/metabolismo , Células Piramidales/ultraestructura , Privación Sensorial/fisiología , Homología de Secuencia de Ácido Nucleico , Conducta Social , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Vibrisas/metabolismo , Vibrisas/fisiología
5.
Neuropsychopharmacology ; 42(7): 1502-1510, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28205605

RESUMEN

The formation of long-lasting memories requires coordinated changes in gene expression and protein synthesis. Although many studies implicate DNA modifications (DNA methylation, histone modifications) in memory formation, the contributions of RNA modifications remain largely unexplored. Here we investigated the role of mRNA methylation in hippocampal-dependent memory formation in mice. RNA modifications are highly dynamic and readily reversible. Methyltransferases add a methyl group to mRNA while demethylases remove methyl groups. Here we focused on examining the role of the best characterized RNA demethylase, FTO (fat mass and obesity-associated) in memory. We observed that FTO is expressed in the nuclei, dendrites and near dendritic spines of mouse dorsal hippocampal CA1 neurons. Next, we found that contextual fear conditioning transiently (0.5 h) decreased Fto levels in these neurons, with the largest decrease in FTO observed near synapses. The decrease in FTO observed shortly after contextual fear conditioning suggests that FTO normally constrains memory formation. To directly test this, we artificially decreased FTO levels in dorsal hippocampus of otherwise normal (wild-type) mice by microinjecting before training a single herpes simplex virus (HSV) vector expressing either CRISPR/Cas9 or shRNA targeted against Fto. Decreasing FTO using either method specifically enhanced contextual fear memory. Together, these results show the importance of FTO during memory formation and, furthermore, implicate mRNA modification and epi-transcriptomics as novel regulators of memory formation.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/fisiología , Región CA1 Hipocampal/metabolismo , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Memoria/fisiología , ARN Mensajero/metabolismo , Animales , Miedo/psicología , Masculino , Metilación , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL
6.
Science ; 353(6297): 383-7, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27463673

RESUMEN

Collections of cells called engrams are thought to represent memories. Although there has been progress in identifying and manipulating single engrams, little is known about how multiple engrams interact to influence memory. In lateral amygdala (LA), neurons with increased excitability during training outcompete their neighbors for allocation to an engram. We examined whether competition based on neuronal excitability also governs the interaction between engrams. Mice received two distinct fear conditioning events separated by different intervals. LA neuron excitability was optogenetically manipulated and revealed a transient competitive process that integrates memories for events occurring closely in time (coallocating overlapping populations of neurons to both engrams) and separates memories for events occurring at distal times (disallocating nonoverlapping populations to each engram).


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Consolidación de la Memoria/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Amígdala del Cerebelo/citología , Animales , Comunicación Celular , Condicionamiento Psicológico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética
7.
Neuropsychopharmacology ; 41(13): 2987-2993, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27187069

RESUMEN

The dentate gyrus (DG) is important for encoding contextual memories, but little is known about how a population of DG neurons comes to encode and support a particular memory. One possibility is that recruitment into an engram depends on a neuron's excitability. Here, we manipulated excitability by overexpressing CREB in a random population of DG neurons and examined whether this biased their recruitment to an engram supporting a contextual fear memory. To directly assess whether neurons overexpressing CREB at the time of training became critical components of the engram, we examined memory expression while the activity of these neurons was silenced. Chemogenetically (hM4Di, an inhibitory DREADD receptor) or optogenetically (iC++, a light-activated chloride channel) silencing the small number of CREB-overexpressing DG neurons attenuated memory expression, whereas silencing a similar number of random neurons not overexpressing CREB at the time of training did not. As post-encoding reactivation of the activity patterns present during initial experience is thought to be important in memory consolidation, we investigated whether post-training silencing of neurons allocated to an engram disrupted subsequent memory expression. We found that silencing neurons 5 min (but not 24 h) following training disrupted memory expression. Together these results indicate that the rules of neuronal allocation to an engram originally described in the lateral amygdala are followed in different brain regions including DG, and moreover, that disrupting the post-training activity pattern of these neurons prevents memory consolidation.


Asunto(s)
Hipocampo/citología , Neuronas/fisiología , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Miedo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Optogenética , Transducción Genética
8.
Chem Biol ; 22(11): 1531-1539, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26590638

RESUMEN

Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue-light-controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light-driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events.


Asunto(s)
Proteína de Unión a CREB/antagonistas & inhibidores , Optogenética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteína de Unión a CREB/metabolismo , Ácidos Cumáricos/química , ADN/química , ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Células HEK293 , Humanos , Luz , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Propionatos , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo
9.
eNeuro ; 2(3)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26464982

RESUMEN

The development, refinement, and use of techniques that allow high-throughput imaging of whole brains with cellular resolution will help us understand the complex functions of the brain. Such techniques are crucial for the analysis of complete neuronal morphology-anatomical and functional-connectivity, and repeated molecular phenotyping. CLARITY is a recently introduced technique that produces structurally intact, yet optically transparent tissue, which may be labeled and imaged without sectioning. However, the utility of this technique depends on several procedural variables during the process in which the light-scattering lipids in a tissue are replaced by a transparent hydrogel matrix. Here, we systematically varied a number of factors (including temperature, hydrogel composition, and polymerization conditions) to provide an optimized, highly replicable CLARITY procedure for clearing mouse brains. We found that for these preparations optimal tissue clearing requires electrophoresis (and cannot be achieved with passive clearing alone) for 5 d with a combination of 37 and 55°C temperature. Although this protocol is optimized for brains, we also show that it can be used to clear and analyze a variety of organs. Brain or other tissue prepared using this protocol is suitable for high-throughput imaging with confocal or single-plane illumination microscopy.

10.
J Neurosci ; 35(29): 10600-12, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26203153

RESUMEN

New neurons are generated continuously in the subgranular zone of the hippocampus and integrate into existing hippocampal circuits throughout adulthood. Although the addition of these new neurons may facilitate the formation of new memories, as they integrate, they provide additional excitatory drive to CA3 pyramidal neurons. During development, to maintain homeostasis, new neurons form preferential contacts with local inhibitory circuits. Using retroviral and transgenic approaches to label adult-generated granule cells, we first asked whether a comparable process occurs in the adult hippocampus in mice. Similar to development, we found that, during adulthood, new neurons form connections with inhibitory cells in the dentate gyrus, hilus, and CA3 regions as they integrate into hippocampal circuits. In particular, en passant bouton and filopodia connections with CA3 interneurons peak when adult-generated dentate granule cells (DGCs) are ∼4 weeks of age, a time point when these cells are most excitable. Consistent with this, optical stimulation of 4-week-old (but not 6- or 8-week-old) adult-generated DGCs strongly activated CA3 interneurons. Finally, we found that CA3 interneurons were activated robustly during learning and that their activity was strongly coupled with activity of 4-week-old (but not older) adult-generated DGCs. These data indicate that, as adult-generated neurons integrate into hippocampal circuits, they transiently form strong anatomical, effective, and functional connections with local inhibitory circuits in CA3. Significance statement: New neurons are generated continuously in the subgranular zone of the hippocampus and integrate into existing hippocampal circuits throughout adulthood. Understanding how these cells integrate within well formed circuits will increase our knowledge about the basic principles governing circuit assembly in the adult hippocampus. This study uses a combined connectivity analysis (anatomical, functional, and effective) of the output connections of adult-born hippocampal cells to show that, as these cells integrate into hippocampal circuits, they transiently form strong connections with local inhibitory circuits. This transient increase of connectivity may represent an homeostatic process necessary to accommodate changes in the excitation/inhibition balance induced by the addition of these new excitatory cells to the preexisting excitatory hippocampal circuits.


Asunto(s)
Hipocampo/citología , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Envejecimiento , Animales , Hipocampo/fisiología , Inmunohistoquímica , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Optogenética
11.
Neuron ; 83(3): 722-35, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25102562

RESUMEN

Memories are thought to be sparsely encoded in neuronal networks, but little is known about why a given neuron is recruited or allocated to a particular memory trace. Previous research shows that in the lateral amygdala (LA), neurons with increased CREB are selectively recruited to a fear memory trace. CREB is a ubiquitous transcription factor implicated in many cellular processes. Which process mediates neuronal memory allocation? One hypothesis is that CREB increases neuronal excitability to bias neuronal recruitment, although this has not been shown experimentally. Here we use several methods to increase neuronal excitability and show this both biases recruitment into the memory trace and enhances memory formation. Moreover, artificial activation of these neurons alone is a sufficient retrieval cue for fear memory expression, showing that these neurons are critical components of the memory trace. These results indicate that neuronal memory allocation is based on relative neuronal excitability immediately before training.


Asunto(s)
Condicionamiento Psicológico/fisiología , Miedo/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Amígdala del Cerebelo/fisiología , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Aprendizaje , Masculino , Fenómenos Fisiológicos del Sistema Nervioso , Neuronas/metabolismo
12.
Front Behav Neurosci ; 7: 209, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24391565

RESUMEN

Neurons may compete against one another for integration into a memory trace. Specifically, neurons in the lateral nucleus of the amygdala with relatively higher levels of cAMP Responsive Element Binding Protein (CREB) seem to be preferentially allocated to a fear memory trace, while neurons with relatively decreased CREB function seem to be excluded from a fear memory trace. CREB is a ubiquitous transcription factor that modulates many diverse cellular processes, raising the question as to which of these CREB-mediated processes underlie memory allocation. CREB is implicated in modulating dendritic spine number and morphology. As dendritic spines are intimately involved in memory formation, we investigated whether manipulations of CREB function alter spine number or morphology of neurons at the time of fear conditioning. We used viral vectors to manipulate CREB function in the lateral amygdala (LA) principal neurons in mice maintained in their homecages. At the time that fear conditioning normally occurs, we observed that neurons with high levels of CREB had more dendritic spines, while neurons with low CREB function had relatively fewer spines compared to control neurons. These results suggest that the modulation of spine density provides a potential mechanism for preferential allocation of a subset of neurons to the memory trace.

13.
Cell Mol Life Sci ; 70(2): 335-56, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22945799

RESUMEN

KIF1Bß is a kinesin-like, microtubule-based molecular motor protein involved in anterograde axonal vesicular transport in vertebrate and invertebrate neurons. Certain KIF1Bß isoforms have been implicated in different forms of human neurodegenerative disease, with characterization of their functional integration and regulation in the context of synaptic signaling still ongoing. Here, we characterize human KIF1Bß (isoform NM015074), whose expression we show to be developmentally regulated and elevated in cortical areas of the CNS (including the motor cortex), in the hippocampus, and in spinal motor neurons. KIF1Bß localizes to the cell body, axon, and dendrites, overlapping with synaptic-vesicle and postsynaptic-density structures. Correspondingly, in purified cortical synaptoneurosomes, KIF1Bß is enriched in both pre- and postsynaptic structures, forming detergent-resistant complexes. Interestingly, KIF1Bß forms RNA-protein complexes, containing the dendritically localized Arc and Calmodulin mRNAs, proteins previously shown to be part of RNA transport granules such as Purα, FMRP and FXR2P, and motor protein KIF3A, as well as Calmodulin. The interaction between KIF1Bß and Calmodulin is Ca(+2)-dependent and takes place through a domain mapped at the carboxy-terminal tail of the motor. Live imaging of cortical neurons reveals active movement by KIF1Bß at dendritic processes, suggesting that it mediates the transport of dendritically localized mRNAs. Finally, we show that synaptic recruitment of KIF1Bß is activity-dependent and increased by stimulation of metabotropic or ionotropic glutamate receptors. The activity-dependent synaptic recruitment of KIF1Bß, its interaction with Ca(2+) sensor Calmodulin, and its new role as a dendritic motor of ribonucleoprotein complexes provide a novel basis for understanding the concerted co-ordination of motor protein mobilization and synaptic signaling pathways.


Asunto(s)
Sistema Nervioso Central/metabolismo , Dendritas/metabolismo , Cinesinas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Neuronas Motoras/metabolismo , Ribonucleoproteínas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Transporte Biológico , Calcio/metabolismo , Calmodulina/metabolismo , Línea Celular Tumoral , Humanos , Cinesinas/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/etiología , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Receptores de Glutamato/metabolismo , Transducción de Señal
14.
J Neurosci ; 32(49): 17857-68, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23223304

RESUMEN

Memory stabilization following encoding (synaptic consolidation) or memory reactivation (reconsolidation) requires gene expression and protein synthesis (Dudai and Eisenberg, 2004; Tronson and Taylor, 2007; Nader and Einarsson, 2010; Alberini, 2011). Although consolidation and reconsolidation may be mediated by distinct molecular mechanisms (Lee et al., 2004), disrupting the function of the transcription factor CREB impairs both processes (Kida et al., 2002; Mamiya et al., 2009). Phosphorylation of CREB at Ser133 recruits CREB binding protein (CBP)/p300 coactivators to activate transcription (Chrivia et al., 1993; Parker et al., 1996). In addition to this well known mechanism, CREB regulated transcription coactivators (CRTCs), previously called transducers of regulated CREB (TORC) activity, stimulate CREB-mediated transcription, even in the absence of CREB phosphorylation. Recently, CRTC1 has been shown to undergo activity-dependent trafficking from synapses and dendrites to the nucleus in excitatory hippocampal neurons (Ch'ng et al., 2012). Despite being a powerful and specific coactivator of CREB, the role of CRTC in memory is virtually unexplored. To examine the effects of increasing CRTC levels, we used viral vectors to locally and acutely increase CRTC1 in the dorsal hippocampus dentate gyrus region of mice before training or memory reactivation in context fear conditioning. Overexpressing CRTC1 enhanced both memory consolidation and reconsolidation; CRTC1-mediated memory facilitation was context specific (did not generalize to nontrained context) and long lasting (observed after virally expressed CRTC1 dissipated). CREB overexpression produced strikingly similar effects. Therefore, increasing CRTC1 or CREB function is sufficient to enhance the strength of new, as well as established reactivated, memories without compromising memory quality.


Asunto(s)
Giro Dentado/fisiología , Memoria/fisiología , Factores de Transcripción/fisiología , Animales , Condicionamiento Psicológico/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Giro Dentado/metabolismo , Miedo/fisiología , Miedo/psicología , Femenino , Genes fos/fisiología , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Neuronas/fisiología , Cultivo Primario de Células , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección/métodos
15.
Nat Neurosci ; 15(9): 1255-64, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22885849

RESUMEN

Memory formation is thought to be mediated by dendritic-spine growth and restructuring. Myocyte enhancer factor 2 (MEF2) restricts spine growth in vitro, suggesting that this transcription factor negatively regulates the spine remodeling necessary for memory formation. Here we show that memory formation in adult mice was associated with changes in endogenous MEF2 levels and function. Locally and acutely increasing MEF2 function in the dentate gyrus blocked both learning-induced increases in spine density and spatial-memory formation. Increasing MEF2 function in amygdala disrupted fear-memory formation. We rescued MEF2-induced memory disruption by interfering with AMPA receptor endocytosis, suggesting that AMPA receptor trafficking is a key mechanism underlying the effects of MEF2. In contrast, decreasing MEF2 function in dentate gyrus and amygdala facilitated the formation of spatial and fear memory, respectively. These bidirectional effects indicate that MEF2 is a key regulator of plasticity and that relieving the suppressive effects of MEF2-mediated transcription permits memory formation.


Asunto(s)
Aprendizaje/fisiología , Memoria/fisiología , Factores Reguladores Miogénicos/fisiología , Plasticidad Neuronal/fisiología , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Western Blotting , Condicionamiento Psicológico/fisiología , Espinas Dendríticas/fisiología , Dependovirus , Endocitosis/fisiología , Miedo , Femenino , Vectores Genéticos , Hipocampo/citología , Hipocampo/fisiología , Inmunohistoquímica , Hibridación Fluorescente in Situ , Luciferasas/genética , Factores de Transcripción MEF2 , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Factores Reguladores Miogénicos/genética , Neuronas/fisiología , Receptores AMPA/fisiología , Simplexvirus/genética
16.
Mol Brain ; 5: 6, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22304729

RESUMEN

Although the cortex has been extensively studied in long-term memory storage, less emphasis has been placed on immediate cortical contributions to fear memory formation. AMPA receptor plasticity is strongly implicated in learning and memory, and studies have identified calcium permeable AMPA receptors (CP-AMPARs) as mediators of synaptic strengthening. Trace fear learning engages the anterior cingulate cortex (ACC), but whether plastic events occur within the ACC in response to trace fear learning, and whether GluN2B subunits are required remains unknown. Here we show that the ACC is necessary for trace fear learning, and shows a rapid 20% upregulation of membrane AMPA receptor GluA1 subunits that is evident immediately after conditioning. Inhibition of NMDA receptor GluN2B subunits during training prevented the upregulation, and disrupted trace fear memory retrieval 48 h later. Furthermore, intra-ACC injections of the CP-AMPAR channel antagonist, 1-naphthylacetyl spermine (NASPM) immediately following trace fear conditioning blocked 24 h fear memory retrieval. Accordingly, whole cell patch clamp recordings from c-fos positive and c-fos negative neurons within the ACC in response to trace fear learning revealed an increased sensitivity to NASPM in recently activated neurons that was reversed by reconsolidation update extinction. Our results suggest that trace fear learning is mediated through rapid GluN2B dependent trafficking of CP-AMPARs, and present in vivo evidence that CP-AMPAR activity within the ACC immediately after conditioning is necessary for subsequent memory consolidation processes.


Asunto(s)
Miedo/fisiología , Giro del Cíngulo/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Animales , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Giro del Cíngulo/efectos de los fármacos , Técnicas In Vitro , Aprendizaje/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Espermina/análogos & derivados , Espermina/farmacología , Sinapsis/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
17.
J Neurosci ; 31(24): 8786-802, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21677163

RESUMEN

Unraveling the mechanisms by which the molecular manipulation of genes of interest enhances cognitive function is important to establish genetic therapies for cognitive disorders. Although CREB is thought to positively regulate formation of long-term memory (LTM), gain-of-function effects of CREB remain poorly understood, especially at the behavioral level. To address this, we generated four lines of transgenic mice expressing dominant active CREB mutants (CREB-Y134F or CREB-DIEDML) in the forebrain that exhibited moderate upregulation of CREB activity. These transgenic lines improved not only LTM but also long-lasting long-term potentiation in the CA1 area in the hippocampus. However, we also observed enhanced short-term memory (STM) in contextual fear-conditioning and social recognition tasks. Enhanced LTM and STM could be dissociated behaviorally in these four lines of transgenic mice, suggesting that the underlying mechanism for enhanced STM and LTM are distinct. LTM enhancement seems to be attributable to the improvement of memory consolidation by the upregulation of CREB transcriptional activity, whereas higher basal levels of BDNF, a CREB target gene, predicted enhanced shorter-term memory. The importance of BDNF in STM was verified by microinfusing BDNF or BDNF inhibitors into the hippocampus of wild-type or transgenic mice. Additionally, increasing BDNF further enhanced LTM in one of the lines of transgenic mice that displayed a normal BDNF level but enhanced LTM, suggesting that upregulation of BDNF and CREB activity cooperatively enhances LTM formation. Our findings suggest that CREB positively regulates memory consolidation and affects memory performance by regulating BDNF expression.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Regulación hacia Arriba/fisiología , Análisis de Varianza , Animales , Proteínas Bacterianas/genética , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteína de Unión a CREB/genética , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Carbazoles/farmacología , Línea Celular Transformada , Chlorocebus aethiops , Condicionamiento Clásico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Discriminación en Psicología , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Miedo , Transferencia Resonante de Energía de Fluorescencia , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Alcaloides Indólicos/farmacología , Potenciación a Largo Plazo/genética , Proteínas Luminiscentes/genética , Aprendizaje por Laberinto , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Técnicas de Placa-Clamp , Fenilalanina/genética , ARN Mensajero/metabolismo , Ratas , Conducta Social , Transfección/métodos , Tirosina/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
18.
Mol Brain ; 4: 6, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21247477

RESUMEN

Affective disorders, which include anxiety and depression, are highly prevalent and have overwhelming emotional and physical symptoms. Despite human brain imaging studies, which have implicated the prefrontal cortex including the anterior cingulate cortex (ACC), little is known about the ACC in anxiety disorders. Here we show that the ACC does modulate anxiety-like behavior in adult mice, and have identified a protein that is critical for this modulation. Absence of neurabin, a cytoskeletal protein, resulted in reduced anxiety-like behavior and increased depression-like behavior. Selective inhibition of neurabin in the ACC reproduced the anxiety but not the depression phenotype. Furthermore, loss of neurabin increased the presynaptic release of glutamate and cingulate neuronal excitability. These findings reveal novel roles of the ACC in anxiety disorders, and provide a new therapeutic target for the treatment of anxiety disorders.


Asunto(s)
Trastornos de Ansiedad/fisiopatología , Ansiedad/fisiopatología , Giro del Cíngulo/fisiología , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Trastornos de Ansiedad/tratamiento farmacológico , Conducta Animal , Células Cultivadas , Trastorno Depresivo/fisiopatología , Moduladores del GABA/farmacología , Técnicas de Silenciamiento del Gen , Giro del Cíngulo/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Microinyecciones , Midazolam/farmacología , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Pruebas Neuropsicológicas , Técnicas de Placa-Clamp , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Transmisión Sináptica/fisiología
19.
Mol Pain ; 6: 52, 2010 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-20836873

RESUMEN

Gastrin-releasing peptide (GRP) has been proposed as a peptidergic molecule for behavioral fear and itching. Immunohistochemistry and in situ hybridization studies have shown that GRP and GRP receptor are widely distributed in forebrain areas. Less information is available for the functional action for GRP in the prefrontal cortex including the anterior cingulate cortex (ACC). Here we used whole-cell patch-clamp recording technique to study the modulation of synaptic transmission by GRP in the ACC. We found that GRP increased the frequency of sIPSCs recorded while had no significant effect on sEPSCs in ACC pyramidal neurons. The facilitatory effect of GRP on sIPSCs was blocked by the GRP receptor antagonist, RC3095. In the presence of TTX, however, GRP had no effect on the mIPSCs. Therefore, activation of GRP receptor may facilitate the excitation of the interneurons and enhanced spontaneous GABAergic, but not glutamatergic neurotransmission. Similar results on GRP modulation of GABAergic transmission were observed in the insular cortex and amygdala, suggesting a general possible effect of GRP on cortical inhibitory transmission. Our results suggest that GRP receptor is an important regulator of inhibitory circuits in forebrain areas.


Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Giro del Cíngulo/metabolismo , Inhibición Neural/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Bombesina/análogos & derivados , Bombesina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Glutamatos/metabolismo , Giro del Cíngulo/citología , Giro del Cíngulo/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Interneuronas/citología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Picrotoxina/farmacología , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores de Bombesina/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
20.
Mol Brain ; 3: 27, 2010 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-20846411

RESUMEN

Calcium/calmodulin-dependent kinase IV (CaMKIV) phosphorylates the major transcription factor, cyclic AMP-responsive element binding protein (CREB), which plays key roles in synaptic plasticity and memory consolidation. Our previous study showed that long-term potentiation (LTP) in the anterior cingulate cortex (ACC) was significantly enhanced in transgenic mice overexpressing CaMKIV. Considering that the CaMKIV-CREB pathway plays a central role in the protein synthesis-dependent LTP, it is possible that upregulation of CaMKIV contributes to enhancement of LTP by promoting protein synthesis. To test this possibility, we examined the effects of transcription and translation inhibitors on synaptic potentiation induced by pairing of synaptic activity with postsynaptic depolarization (paired training) in ACC pyramidal neurons of wild-type and CaMKIV transgenic mice. We found that synaptic potentiation induced by paired training was partially inhibited by transcription or translation inhibitors both in wild-type and CaMKIV transgenic mice; the extent of inhibition was markedly larger in the CaMKIV transgenic mice than in the wild-type mice. Biochemical and immunohistochemical studies revealed that CaMKIV was distributed in the membrane, cytosol and nucleus of ACC neurons. Our results reveal in the first time a transcription- and translation-dependent component of early synaptic LTP in adult ACC synapses, and demonstrate that CaMKIV enhances early synaptic potentiation by activating new protein synthesis.


Asunto(s)
Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Giro del Cíngulo/enzimología , Giro del Cíngulo/fisiología , Potenciación a Largo Plazo/fisiología , Biosíntesis de Proteínas , Sinapsis/enzimología , Sinapsis/fisiología , Animales , Compartimento Celular , Citosol/enzimología , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/enzimología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...